A hybrid cooperative quantum particle swarm optimizer with dynamic varying search area for function optimization
نویسنده
چکیده
This paper proposes a hybrid cooperative quantum particle swarm optimization (HCQPSO), hybridizing dynamic varying search area, cooperative evolution, simulated annealing and quantum particle swarm optimization (PSO) for function optimization. In the proposed HQCPSO, a technique of dynamic varying search area helps reduce the search spaces and populations of swarms, which could make the optimization more efficient. Simulated annealing is integrated in the position update to modify the trajectories of particles to avoid being trapped in the local optimum. To test the performance of HQCPSO, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on benchmark test functions. Streszczenie. W artykule zaproponowano hybrydowy algorytm optymalizacji PSO. Porównanie z innymi, znanymi wariantami wykazało, że zastosowane w metodzie rozwiązania, pozwalają na efektywniejsze działanie proponowanego algorytmu PSO. Wyniki eksperymentalne potwierdziły powyższą tezę. (Hybrydowy algorytm optymalizacji roju cząstek z dynamicznie zmiennym obszarem wyszukiwania w optymalizacji funkcji).
منابع مشابه
A Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملAdaptive Particle Swarm Optimizer: Response to Dynamic Systems through Rank-based Selection
A response method to dynamic changes based on evolutionary computation is proposed for the particle swarm optimizer. The method uses rank-based selection to replace half of the lower fitness population with the higher fitness population, when changes are detected. Time-varying values for the acceleration coefficients are proposed to keep a higher degree of global search and a lower degree of lo...
متن کاملCooperative Quantum-Behaved Particle Swarm Optimization with Dynamic Varying Search Areas and Lévy Flight Disturbance
This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the ...
متن کاملEnhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)
So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...
متن کاملMultibeam Antennas Array Pattern Synthesis using Hybrid Particle Swarm Optimiser with Breeding and Subpopulations Algorithm
In this paper a new effective optimization algorithm called hybrid particle swarm optimizer with breeding and subpopulation is presented. This algorithm is essentially, as PSO and GA, a population-based heuristic search technique, now in use for the optimization of electromagnetic structures, modeled on the concepts of natural selection and evolution (GA) but also based on cultural and social r...
متن کامل